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Abstract

Taurine (TAU) is a free amino acid abundant in the human body. Various physiological roles have been attributed 
to TAU. At the subcellular level, mitochondria are the primary targets for TAU function. Meanwhile, it has been 
found that TAU depletion is associated with severe pathologies. Cholestasis is a severe clinical complication that 
can progress to liver fibrosis, cirrhosis, and hepatic failure. Bile duct ligation (BDL) is a reliable model for assess-
ing cholestasis/cirrhosis and related complications. The current study was designed to investigate the effects of 
cholestasis/cirrhosis on tissue and mitochondrial TAU reservoirs. Cholestatic rats were monitored (14 and 42 days 
after BDL surgery), and TAU levels were assessed in various tissues and isolated mitochondria. There was  
a significant decrease in TAU in the brain, heart, liver, kidney, skeletal muscle, intestine, lung, testis, and ovary 
of the BDL animals (14 and 42 days after surgery). Mitochondrial levels of TAU were also significantly depleted 
in BDL animals. Tissue and mitochondrial TAU levels in cirrhotic animals (42 days after the BDL operation) were 
substantially lower than those in the cholestatic rats (14 days after BDL surgery). These data indicate an essential 
role for tissue and mitochondrial TAU in preventing organ injury induced by cholestasis/cirrhosis and could justify 
TAU supplementation for therapeutic purposes.
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Introduction

Taurine (β-amino-ethane sulfonic acid; TAU) is  
the most plentiful free amino acid in the human body 
[1, 2]. This amino acid is abundantly found in almost all 
cell types [1, 2]. Although TAU does not contribute to 
the protein’s structure, several physiological roles have 
been attributed to this amino acid [1, 2]. TAU plays  
a significant role in bile acid conjugation and acts as an 

essential osmolyte in various biological systems [1-5]. 
Despite the ubiquitous physiological functions of TAU, 
its action in the pathophysiology of diseases is large-
ly disputed. On the other hand, it has been found that 
TAU deficiency can seriously impair the function of sev-
eral organs such as the skeletal muscle and heart [6-9]. 
Therefore, it is essential to investigate the role of TAU 
deficiency in the pathogenesis of the human disease.
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Body TAU can be synthesized in the liver or sup-
plied from the diet. The source of body TAU is essen-
tially species-dependent [10, 11]. Some species, such as 
foxes and felines, entirely depend on the dietary TAU 
[10, 11]. In humans, the hepatic TAU synthesizing 
capability is negligible, and this compound is primarily 
supplied from the diet [12, 13]. Seafood (e.g., oysters 
and muscles) is a well-known dietary source of TAU 
[14]. TAU is taken up by various cell types via specific 
transporters (TauT) [15]. The accumulation of TAU in 
different organs is widely variable [15]. Tissues such as 
the heart and skeletal muscle contain very high con-
centrations of TAU [15]. At the subcellular levels, TAU 
is mostly compartmentalized in mitochondria [12, 
16]. Several lines of evidence support the pivotal role 
of TAU in mitochondrial function [17-20]. It has been 
found that TAU can regulate mitochondrial energy me-
tabolism, attenuate mitochondria-facilitated reactive 
oxygen species (ROS) formation, and prevent mito- 
chondria-mediated apoptosis and cell death [17-24]. 
Interestingly, it has been found that TAU is also in-
corporated in mitochondrial tRNA structure [12, 17, 
25-27]. Thus, the synthesis of mitochondrial proteins 
(e.g., respiratory chain complexes) is impaired in TAU 
deficiency [12, 17, 25-27]. Decreased integrity of mito- 
chondrial respiratory chain complexes is repeatedly 
mentioned in TAU deficiency conditions [22, 28]. These 
events may impair ATP metabolism, cellular energy 
crisis, cell death, and organ injury [22, 28].

Cholestasis is a severe clinical complication in-
duced by xenobiotics or liver disease [29, 30]. The liver 
is the main organ influenced by cholestasis [31-34]. 
Prolonged cholestasis can lead to tissue fibrosis, cir-
rhosis, and fulminant hepatic failure [29, 30]. However, 
organs other than the liver may also be affected during 
cholestasis [31-33]. It is well known that cholestatic 
liver disease is related to brain injury, skeletal muscle 
damage, cardiovascular dysfunction, lung injury, renal 
impairment, intestinal damage and permeability, and 
poor function of reproductive organs [35-42]. Several 
lines of evidence indicate that bile duct ligation (BDL) 
is a suitable experimental tool to investigate cholesta-
sis-induced organ injury [33, 43-48]. Severe liver his-
topathological changes, cardiac dysfunction, skeletal 
muscle atrophy, muscle mass loss (sarcopenia), brain 
and lung injury, hepatic encephalopathy, intestinal and 
renal damage (cholemic nephropathy), and poor re-
productive organs function are appropriately induced 
in the BDL model of cholestasis [33, 36, 42-47]. On 
the other hand, various investigations, including our 
research on BDL animals, indicate the essential role of  
mitochondrial impairment in the pathogenesis of cho- 
lestasis-associated complications [23, 33, 38, 41, 49-66]. 

Based on the above literature, the current investiga-
tion was designed to evaluate tissue and mitochondrial 
TAU levels in various organs of BDL rats. The obtained 
data could help to identify factors involved in the pa- 
thogenesis of cholestasis/cirrhosis-induced organ in-
jury and, eventually, the development of therapeutic 
options in this disease.

Material and methods

Reagents

Trichloroacetic acid, potassium chloride, sucrose, 
3-(N-morpholino) propanesulfonic acid (MOPS), 
iodoacetic acid, ethylenediamine tetra-acetic acid 
(EDTA), potassium hydroxide, phosphoric acid, ace-
tonitrile HPLC grade, 2-[4-(2-hydroxyethyl)piperaz-
in-1-yl]ethane sulfonic acid (HEPES), sodium chloride, 
2amino2-hydroxymethyl-propane-1,3-diol-hydrochlo-
ride (Tris-HCl), sucrose, trypsin, bovine serum albu-
min (BSA), trichloroacetic acid, sodium carbonate, and 
D-mannitol were obtained from Merck (Darmstadt, 
Germany). Ketamine and xylazine were purchased 
from Bioveta (Czech Republic). Anhydride calcium, 
methyl tetrazolium, dinitrofluorobenzene (DNFB),  
dimethyl sulfoxide, and taurine (2-aminoethanesulfon-
ic acid) were purchased from Sigma-Aldrich (St. Louis, 
MO, USA).

Animals 

Forty-eight healthy mature male and female 
Sprague Dawley (SD) rats (250-300 g) were obtained 
from Shiraz University of Medical Sciences, Shiraz, 
Iran. Animals were housed in polystyrene cages over 
wood-chip bedding. There was an environmental tem-
perature of 24 ±1°C and a 12  l photoschedule, along 
with ≈ 40% relative humidity. Rats had free access to  
a regular rodents’ chow diet (RoyanFeed, Isfahan, Iran) 
and tap water [67]. An ethics committee approved 
all animal experiments in Shiraz University of Med-
ical Sciences, Shiraz, Iran (#95-01-36-11587) and the  
ARRIVE guidelines (Animal Research: Reporting of  
In Vivo Experiments).

Experimental setup

Bile duct ligation is an appropriate animal model to 
investigate the adverse effect of cholestasis in the liver 
[42, 62, 68-70]. For BDL surgery, rats were anesthe-
tized (a mixture of 8 mg/kg of xylazine and 60 mg/kg 
of ketamine, intraperitoneally [IP]). Then, a midline in- 
cision through the linea alba was made, and the com-



Clinical and Experimental Hepatology 3/2022 197

Taurine depletion in cholestasis/cirrhosis

mon bile duct was localized and doubly ligated [42, 62, 
68-70]. The sham operation involved laparotomy and 
bile duct localization without ligation.

Sample collection

Eight animals per group (sham-operated or BDL 
animals) were anesthetized (thiopental 80 mg/kg) at 
14 and 42 days after the BDL operation. Tissue samples 
including brain, heart, liver, kidney, skeletal muscle, 
lung, intestine, ovary, testis, and blood samples were 
collected. Equal amounts of tissue samples (5% w : v) 
were homogenized in a solution containing 70 mM 
mannitol, 220 mM sucrose, 2 mM HEPES, 0.5 mM 
EGTA, and 0.1% essentially fatty acid-free bovine se-
rum albumin (pH = 7.4) [63]. One milliliter of each 
blood sample was centrifuged (4000 g, 15 min, 4°C) 
and used for serum biochemical analysis. One millili-
ter of tissue homogenate was used for TAU evaluation, 
and the rest of the samples were used for mitochondria 
isolation. Liver tissue samples were also histopatholog-
ically analyzed (H&E staining for regular histopatho-
logical alterations and trichrome staining for tissue 
fibrosis) to confirm the occurrence of cholestasis/cir-
rhosis in the current model.

Mitochondria isolation protocol

Mitochondria were isolated from different tissues 
with high mitochondrial content (brain, heart, liver, 
skeletal muscle, and kidney) based on the differential 
centrifugation protocol [33, 71-75]. The right and left 
hind legs’ gastrocnemius muscle was used for skeletal 
muscle mitochondria isolation. Samples of heart tissue 
and skeletal muscle were minced in isolation buffer 
(70 mM mannitol, 220 mM sucrose, 2 mM HEPES,  
0.5 mM EGTA, and 0.1% essentially fatty acid-free 
bovine serum albumin, pH = 7.4) containing trypsin  
(0.1% w : v), and incubated on ice for 15 minutes [38, 71]. 
Then, samples were centrifuged (10,000 g, 10 min, 
4°C), and the supernatant was discarded. The pellet 
(heart and skeletal muscle tissue) was homogenized in 
the isolation buffer at a 10 : 1 ratio of isolation buffer to 
tissue (v : w) and homogenized [71, 76, 77]. Other tis-
sues were washed and minced in an ice-cold (4°C) iso-
lation buffer medium. The minced tissues were trans-
ported into a fresh buffer (10 : 1 ratio) medium and 
homogenized. Then, the mitochondria-rich fraction 
was isolated by the differential centrifugation method 
[53, 67, 71, 78, 79]. First, tissue sample homogenates 
were centrifuged at 1000 g for 20 min (4°C) to pel-
let intact cells and RBCs. Then, the supernatant was 
centrifuged (10,000 g, 4°C, 20 min) to pellet the mito-

chondrial fraction. The crude mitochondrial fraction 
was further centrifuged at least three times (12,000 g, 
4°C, 20 min) [80, 81]. Protein levels were measured 
using bovine serum albumin as a standard based on  
the Bradford method.

Tissue and mitochondrial taurine content

Samples (1 ml of the 5 mg protein/ml of isolated 
mitochondrial preparations or 1 ml of 10% w : v of 
tissue homogenate) were treated with 100 µl of TCA 
(50% w : v), vortexed well (30 s), and incubated at room 
temperature for 10 minutes. Afterward, tubes were 
vortexed again and centrifuged (15,000 g, 20 min). 
Then, the supernatant was collected in 10 ml tubes and 
treated with 2 ml of carbonate buffer (0.1 M, pH = 9.0), 
0.5 ml of DMSO, and 100 µl of DNFB. Samples were 
protected from light and mixed well (vortexed for 30 s) 
then incubated at 40°C for 15 min. After the incubation 
period, samples were centrifuged (16,000 g, 20 min) 
and protected from light. Samples (25 µl) were inject-
ed into an HPLC apparatus consisting of a C18 col-
umn (250 × 4.6 mm, Alltech Econosphere, 3 µm) and 
a UV detector (set at λ = 360 nm) [82]. Mobile phases 
were composed of buffer A (phosphate buffer, 0.01 M,  
pH = 3.0) and buffer B (HPLC grade acetonitrile).  
The gradient program begins at 10% B, ramps to 25% B 
at 10 minutes, then ramps to 50% B at 15 minutes, 
and was held at 50% B until 20 minutes. Next, the flow 
was back to 10% buffer B until the run time ended  
(30 min). The flow rate was 1 ml/min [82].

Statistical analysis

Data are given as mean ± SD. The Shapiro-Wilk 
test was applied to evaluate data normality. Afterward,  
the comparison of data sets was carried out by the one-
way analysis of variance (ANOVA). Tukey’s multiple 
comparison was used as the post hoc test.

Results

Assessment of serum biomarkers revealed a signifi-
cant increase in alanine aminotransferase (ALT), aspar-
tate aminotransferase (AST), and lactate dehydrogenase 
(LDH) in BDL animals compared with the sham-oper-
ated group (Fig.  1). Moreover, serum bilirubin, alka-
line phosphatase (ALP), and γ-glutamyltranspeptidase 
(γ-GT) drastically increased at different time intervals 
after the BDL operation, although there was no sig-
nificant difference between 14- and 42-day groups.  
It should be mentioned that the level of biomarkers 
such as ALP, γ-GT, and bilirubin is constantly high in 
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Fig. 1. Liver tissue histopathological alterations and serum biomarkers indicate appropriate induction of cholestasis/cirrhosis in bile duct ligated (BDL) rats. 
Bile duct proliferation and inflammatory cell infiltration were detected in the liver of cholestatic animals (H&E stain). Scale bar = 100 µm. Moreover, significant 
collagen deposition (blue area in Masson-trichrome stain) indicates liver fibrotic areas. Data are presented as mean ± SD (n = 7). ***Indicates significantly 
different from the sham-operated group (p < 0.001). ns – not significant
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the BDL model of cholestasis due to permanent ligation 
of the bile duct. Furthermore, tissue histopathological 
alterations, including bile duct proliferation, necrosis, 
and inflammatory cell infiltration, as well as significant 
collagen deposition (trichrome stain), were detected in 
the liver of BDL animals (Fig. 1). These data indicate 

the appropriate induction of cholestasis/cirrhosis in 
the current study.

TAU levels were assessed in various tissues of 
cholestatic rats 14 and 42 days after the BDL opera-
tion. Significant depletion in TAU content was evident 
in most tissues 14 days after BDL. On the other hand, 
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the TAU content of all tissues was drastically decreased 
42 days after the BDL surgery. As TAU depletion was 
not significant at 14 days after BDL operation, this 
parameter was not time-dependent in tissues such as  
the liver, ovary, lung, heart, and colon (Fig. 2).

Mitochondrial TAU content of tissues, including 
skeletal muscle, brain, heart, liver, and kidney, signifi-
cantly decreased at both intervals of 14 and 42 days 
after the BDL operation. The decrease in TAU levels of 
mitochondria was not time-dependent in most tissues 
(heart, brain, and kidney) assessed in the current study 
(Fig. 3).

Discussion

Taurine is a very safe amino acid abundantly found 
in the human body. Various experimental models have 
highlighted the physiological and pharmacological 
roles for TAU [1, 2]. However, the role of TAU defi-

ciency in the pathogenesis of many human diseases is 
far from clear. The data obtained from the current in-
vestigation revealed a significant decrease in TAU con-
tent of several tissues as well as mitochondria in BDL 
rats as a reliable animal model of cholestasis/cirrhosis. 
These findings indicate a pivotal role for tissue and mi-
tochondrial TAU in the pathogenesis of cholestasis/
cirrhosis-induced organ injury. As TAU plays a viable 
function as an osmolyte in various tissues [1, 2], and 
most importantly is crucial for mitochondrial function 
and energy metabolism [12, 17, 22, 25-28], significant 
alteration in its levels could play pathogenic roles in 
cholestasis/cirrhosis-linked complications.

The effects of TAU on mitochondrial indices are an 
exciting feature of this amino acid [12, 17, 25-27]. TAU 
is localized in mitochondria via specific transporters 
[83, 84]. Moreover, some studies also found that TAU 
could be synthesized in the mitochondrial matrix [85]. 
These data indicate the importance of TAU in mito-
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chondrial function. Therefore, disruption of the fun-
damental processes such as energy metabolism could 
accompany cellular TAU depletion. Based on these 
data, investigating the TAU level in cholestasis/cirrho-
sis could enhance our understanding of the mecha-
nism of organ injury in these pathological conditions 
and provide viable therapeutic options.

Oxidative stress is a well-known phenomenon in 
various tissues of cholestatic animals [34, 62, 86-89]. 
Oxidative stress could damage multiple cellular tar-
gets, including proteins, lipids, and essential organ-
elles such as mitochondria [31, 35, 88, 90-97]. It is well 
known that oxidative stress is a general phenomenon in 
cholestasis [34, 87, 88]. On the other hand, mitochon-
dria are the major sources of intracellular ROS [98]. 
Interestingly, various investigations have mentioned 
the role of TAU in preventing mitochondria-facili-
tated ROS formation and oxidative stress [19, 20, 22]. 
The role of TAU in mitochondrial tRNA structure and 
function is an interesting feature of this amino acid 
[15, 26, 83, 99-102]. It is well known that the prop-
er modification of mitochondrial tRNA structure by 
TAU leads to appropriate synthesis and function of 
mitochondrial proteins (e.g., mitochondrial respira-
tory chain complexes) [15, 26, 83, 99-102]. Thus, the 
impact of TAU in the appropriate synthesis and func-
tion of mitochondria respiratory chain complexes is a 
fundamental role of this compound in preventing mi-
tochondria-mediated oxidative stress [19, 20]. In our 
recent studies on cholestatic animals, we repeatedly 
found that TAU supplementation could improve mi-
tochondrial function and blunt oxidative stress in var-
ious organs [23, 103, 104]. Based on these data, TAU 
depletion in various organs during cholestasis/cirrho-
sis is directly connected to the occurrence of oxidative 
stress and its linked complications.

Some studies indicate that TAU deficiency me-
diates apoptosis and cell death through a mitochon-
dria-dependent pathway [28]. Interestingly, it has been 
found that TAU deficiency could lead to the induction 
of mitochondrial permeability transition pore (mPT) 
[105]. Jong et al. revealed that mitochondrial TAU 
content is directly associated with increased cell apop-
tosis [105]. mPT induction could cause the release of 
cell death mediators (e.g., cytochrome c) from this or-
ganelle [105]. The release of other cell death mediators 
such as apoptosis-inducing factor (AIF) also has been 
reported in different tissues of cholestatic animals [53]. 
However, more studies are needed to identify a con-
nection between mitochondrial TAU deficiency and 
the release of such mediators from mitochondria.

It has been well documented that collagen deposi-
tion and fibrosis are important events in the liver, kid-

ney, lung, and heart during cholestasis/cirrhosis [47, 
106-110]. Tissue fibrosis results from a complex pro-
cess connected to oxidative stress [111]. On the other 
hand, mitochondria are significant sources of intracel-
lular ROS [98]. Therefore, mitochondrial impairment 
could play a pathogenic role in tissue fibrosis during 
cholestasis. It has been reported that protecting cellu-
lar mitochondria could significantly prevent liver inju-
ry and fibrosis in an experimental model of cirrhosis 
[112]. Pérez et al. found that mitochondria-mediated 
cell death could play a crucial role in liver injury during 
cirrhosis [112]. These investigations highlight the im-
portance of mitochondrial impairment in chronic liv-
er disease, leading to fibrotic lesions. The antifibrotic 
properties of TAU have also been frequently men-
tioned in various tissues [113-117]. Previous investiga-
tions indicated that liver mitochondrial function was 
severely impaired in the BDL model of hepatic fibrosis 
[33, 118-120]. On the other hand, it has been found 
that TAU could significantly enhance mitochondrial 
function and prevent mitochondria-facilitated ROS 
formation and oxidative stress [103, 121]. Therefore, 
we might be able to hypothesize that a part of the anti-
fibrotic effects of TAU could be mediated through mi-
tochondrial-dependent mechanisms.

In the following parts, the role of TAU deficiency and 
its potential link with organ injury reported in cholesta-
sis/cirrhosis (liver, brain, heart, kidney, skeletal muscle, 
and intestinal damage) is discussed in the context of the 
fundamental role of this amino acid in mitochondrial 
function and mitigating oxidative stress.

It has been found that TAU had significant hepato-
protective properties in both experimental models and 
human cases of cholestasis/cirrhosis [122-124]. For ex-
ample, the effect of TAU on portal hypertension is an 
exciting feature of this amino acid [122-124]. The im-
pacts of TAU on the morphology of the liver and bio-
mechanical properties of the portal vein seem to be in-
volved in its effects on portal hypertension in cirrhotic 
patients [122-124]. It is well known that the effects of 
TAU in mitigating oxidative stress and its associated 
complications in the liver play a pivotal role in its hepa-
toprotective properties [70, 103, 121, 125-135]. On the 
other hand, the effects of TAU on hepatocytes’ mito-
chondrial function have also been repeatedly investigat-
ed [33, 103, 118-121, 136-138]. It is well established that 
TAU could enhance mitochondria energy metabolism, 
prevent mitochondrial permeabilization, and blunt mi-
tochondria-mediated cell death in experimental models 
of hepatic injury [33, 103, 118-121, 136, 137]. These data 
indicate that TAU is an excellent and safe compound for 
managing liver dysfunction as the main complication in 
cholestasis/cirrhosis. The current study found that liv-
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er tissue and hepatocytes’ mitochondrial TAU content 
were significantly depleted in cholestatic/cirrhotic ani-
mals (Figs. 2 and 3). Therefore, TAU supplementation 
could be a viable therapeutic option to blunt liver injury 
during cholestasis/cirrhosis.

Brain injury is a critical complication in cholesta-
sis/cirrhosis [139, 140]. Several mechanisms have been 
proposed for cholestasis/cirrhosis-induced brain inju-
ry [139-142]. The first, and probably the most import-
ant one, is the disruption of the urea cycle in the liver 
and the accumulation of ammonia in plasma and brain 
tissue [139]. Ammonia is a neurotoxin, and it has been 
repeatedly mentioned that this agent is responsible for 
neuronal damage, cognitive dysfunction, brain ede-
ma, and coma in cirrhotic patients [139]. Some other 
compounds, such as bilirubin and manganese (Mn), 
also accumulate in different tissues such as the brain 
during cholestasis [139]. The mentioned compounds 
are well-known neurotoxicants [139]. Oxidative stress 
is a common feature of cholestasis/cirrhosis-induced 
brain injury [139, 143, 144]. Also, mitochondrial in-
jury seems to play a crucial role in the pathogenesis 
of these complications [139]. All bile constituents such 
as Mn, bilirubin, and bile acids have adverse effects 
on mitochondrial function and energy metabolism 
[139, 145, 146]. In the current study, we discovered  
a significant decline in the TAU content of the brain 
tissue and isolated mitochondria (Figs. 2 and 3). On 
the other hand, a plethora of evidence indicates that 
this amino acid dramatically alleviates oxidative stress 
and enhances mitochondrial function in various ex-
perimental models of brain injury [147-149]. Our pre- 
vious studies also found that TAU could improve brain 
mitochondrial function, mitigate biomarkers of oxi-
dative stress, and enhance animals’ locomotor activity 
[70, 76, 103]. These data suggest that cholestatic/cir-
rhotic patients could benefit from the neuroprotective 
properties of TAU.

Sarcopenia or muscle mass loss is a serious compli-
cation in cirrhotic patients, leading to severe disability 
[51, 150-152]. Cirrhosis-induced sarcopenia could also 
significantly influence the outcome of therapeutic inter-
ventions such as liver transplantation [150, 153]. Several 
studies have mentioned that mitochondrial impairment 
and oxidative stress are crucial mechanisms involved in 
the pathogenesis of sarcopenia-induced muscle injury 
[51]. The effects of TAU on muscle function are another 
critical feature of this amino acid [24, 154-158]. TAU is 
found at very high concentrations in the skeletal mus-
cle [155, 157]. It has been found that the effect of TAU 
on mitochondrial function and energy metabolism is an  
essential feature of this amino acid in the skeletal muscle 
[9, 20, 24, 159]. Therefore, decreased muscle TAU level is 

associated with muscle dysfunction [9, 24]. Some stud-
ies have revealed that TAU transporter knock-out ani-
mals exhibited a significant decrease in skeletal muscle 
mass and function [9, 160]. Interestingly, changes in mi-
tochondrial morphology of the skeletal muscle have also 
been detected in the ultrastructural analysis of the tissue 
samples from TAU deficient models [8, 9]. On the other 
hand, several studies indicate that TAU could signifi-
cantly enhance muscle performance [24, 69, 161-165]. 
These events indicate that TAU plays a crucial role in 
skeletal muscle function. A big part of TAU effects on 
the skeletal muscle is mediated through this amino ac-
id’s impact on mitochondrial function and energy me-
tabolism [24, 69, 161, 165]. In the current study, we 
detected that TAU levels in skeletal muscle tissue and 
mitochondria were significantly decreased at different 
time intervals after BDL surgery (Figs. 2 and 3); thus, 
TAU deficiency-associated mitochondrial impairment 
could play a critical role in muscle injury induced by 
cholestasis/cirrhosis. Therefore, the administration of 
this amino acid could be a viable strategy for managing 
cirrhosis-associated muscle dysfunction and sarcopenia. 

Cardiac contraction abnormalities, decreased cardi-
ac output, and heart failure could occur in cholestasis/
cirrhosis [166-170]. Cardiac arrhythmia is also a com- 
mon pathological finding in cirrhotic patients [171, 172]. 
Previous studies also indicate oxidative stress, inflam-
mation, and mitochondrial impairment in the heart 
tissue during cirrhosis [23, 173-175]. On the other 
hand, several studies suggest that TAU deficiency is 
associated with cardiac abnormalities [7, 176]. It has 
been found that pathological conditions such as car-
diac atrophy and heart failure accompanied TAU defi-
ciency [7, 176]. Recent studies also mentioned that es-
sential pathways involved in tissue energy metabolism, 
such as fatty acid oxidation, are suppressed in the car-
diac muscle under TAU deficiency conditions [177]. 
Interestingly, in TAU transporter knockout models, ul-
trastructural changes in cardiomyocytes’ mitochondria 
have been detected [7]. Recently we found that TAU 
could significantly improve mitochondrial function 
and blunted oxidative stress in the heart tissue of cir-
rhotic animals [178]. Moreover, it has been repeatedly 
reported that TAU could normalize various types of 
arrhythmia [179]. The effects of TAU on cirrhosis-in-
duced arrhythmia could be an interesting subject for 
future investigations. The current study detected that 
TAU levels dropped significantly in cardiac tissue and 
isolated mitochondria (Figs. 2 and 3). All these data 
support the positive impact of TAU on cardiac func-
tion. Therefore, compensating for TAU deficiency 
could play an essential role in blunting adverse cardiac 
events in cholestatic/cirrhotic patients.



Clinical and Experimental Hepatology 3/2022 203

Taurine depletion in cholestasis/cirrhosis

The adverse effect of cholestasis/cirrhosis on renal 
function is another essential subject widely investigated 
[93, 180-184]. At the early stages of bile duct obstruc-
tion, several potentially cytotoxic molecules such as 
bilirubin and bile acids are suspected to be respon-
sible for direct renal injury [38, 71, 184]. Cholemic 
nephropathy is a phenomenon developed as an early 
response to cholestasis [38]. Bile cast formation, tubu-
lar damage, tissue necrosis, and inflammatory cell in-
filtration have been detected in cholemic nephropathy  
[38, 45, 181]. Renal fibrosis could also occur in cholesta-
sis [38]. On the other hand, cirrhosis-induced renal in-
jury is mainly developed as a hepatorenal syndrome 
[185]. In addition to histopathological changes detect-
ed in cholemic nephropathy, progressive tissue fibrosis, 
severe alteration in renal vasculature, hemodynamic 
changes, and renal failure are common in hepatorenal 
syndrome [185]. Mechanistically, oxidative stress and 
its related events seem to play a fundamental role in 
the pathogenesis of cholemic nephropathy and hepa-
torenal syndrome [38, 71, 90, 186, 187]. Additionally, 
several investigations have revealed the importance 
of mitochondrial impairment in the mechanism of 
cholestasis-induced renal injury [60, 188]. Mitochon-
drial impairment in the kidney could lead to an ener-
gy crisis and subsequent impairment of high energy 
demand processes such as reabsorption of chemicals 
in the renal tubules [189, 190]. This phenomenon is 
known as the Fanconi syndrome [90]. There are re-
ports of the Fanconi syndrome linked with cholesta-
sis/cirrhosis [92, 191-193]. Several studies suggested 
the therapeutic role of antioxidants against cholesta-
sis-induced renal injury [39, 125, 194, 195]. Recently, 
we found that TAU administration to cholestatic rats 
could significantly alleviate cholemic nephropathy in 
BDL animals [104]. The effects of TAU on mitochon-
drial parameters and oxidative stress seem to be the 
primary mechanism for its renoprotective properties 
in cholestatic rats [104]. On the other hand, the effects 
of TAU on the renal blood flow, osmoregulation, glom-
eruli filtration rate, and ion absorption and secretion 
are mentioned as the physiological roles of this amino 
acid in the renal system [196, 197]. Several studies have 
revealed the positive effects of TAU on various types of 
renal disorders and xenobiotics-induced renal injury 
[126, 127, 197-204]. In the current study, we found that 
tissue and mitochondrial TAU levels were dramatically 
decreased in the kidney of BDL rats (Figs. 2 and 3). 
Therefore, TAU deficiency could play a significant role 
in the pathogenesis of oxidative stress, mitochondrial 
dysfunction, and renal injury in cholestasis/cirrho-
sis. Based on these data, TAU supplementation could 

serve as a therapeutic option to mitigate cholestasis/
cirrhosis-linked renal impairment.

The role of TAU in reproductive system function, 
in both males and females, is also the subject of many 
investigations in this field [205-214]. On the other 
hand, it has been found that reproductive organs are 
severely damaged during cholestasis [59]. Oxidative 
stress and mitochondrial impairment seem to play  
a pivotal role in the mechanisms of reproductive sys-
tem injury in cholestasis [59]. Meanwhile, it is well es-
tablished that the effects of TAU in counteracting oxi-
dative stress and its related complications are a major 
mechanism for the protective properties of this ami-
no acid in reproductive organs [214, 215]. It has also 
been reported that TAU could significantly improve 
parameters such as sperm motility, sperm antioxidant 
levels, ATP content, and sperm capacitation [205, 213, 
216-220]. TAU also could regulate the synthesis and 
release of important hormones such as testosterone 
and luteinizing hormone (LH) [213]. All these data 
highlight the crucial role of TAU in the reproductive 
system. In the current study, we found that testis and 
ovary TAU levels were significantly depleted in choles-
tatic rats (Fig. 2). Therefore, TAU depletion could be 
linked with poor reproductive factors in males and fe-
males. In this context, TAU supplementation could be 
considered as a strategy to protect reproductive organs 
in cholestasis/cirrhosis.

Several parameters could be involved in the mech-
anism of tissue and mitochondrial TAU depletion in 
cholestasis/cirrhosis. First, and most notably in the cur- 
rent model, the TAU synthesis is disrupted in the liver 
during cholestasis due to severe hepatic injury (Fig. 4). 
This could be the leading cause of perturbed TAU lev-
els in rodent experimental models, as the liver is the 
main organ synthesizing this amino acid. However, 
humans have relied on dietary TAU, and the amount 
of TAU synthesis in the liver is negligible. Therefore, 
other factors such as disturbed absorbance of this 
amino acid could also lower TAU levels in cholesta-
sis/cirrhosis. In the current study, the intestinal (du-
odenum, ileum, and jejunum) TAU level was signifi-
cantly depleted in BDL rats. It is well known that TAU 
is a vital osmolyte that preserves enterocyte integrity 
[221, 222]. Hence, a depleted TAU level in the intes-
tine could disturb the absorbance of many nutrients, 
including TAU itself (Fig. 4). These data indicate that 
TAU supplementation could protect intestinal tissue 
and prevent disturbances in the process of absorption 
of vital compounds into the bloodstream. On the other 
hand, these data suggest that future studies on the clin-
ical administration of TAU to cholestatic/cirrhotic pa-
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tients should be through the parenteral route because 
of intestinal damage in these patients.

Another potential mechanism for decreased TAU 
levels of tissues and mitochondria in cholestasis/cir-
rhosis could be related to the changes in the expression 
and/or activity of TAU transporters (TauT). The cellu-
lar and mitochondrial uptake of TAU is mediated via 
specific TauT [83, 84]. Hence, monitoring the changes 
of these transporters during cholestasis/cirrhosis could 
give a better insight into the mechanisms of TAU de-
pletion in various tissues (Fig. 4).

Cases of TAU deficiency have also been previously 
reported in association with different pathologies. It 
has been found that situations such as long-term para- 
enteral nutrition or acute exposure to cytotoxic agents 
(e.g., cancer chemotherapy regimens) could lead to 
TAU deficiency [223-225]. Today, the importance of 
TAU in regulating the physiological function of differ-
ent systems is entirely approved by many experimental 
and clinical data. The current study found that tissue 
and mitochondrial TAU levels were significantly de-
pleted during cholestasis/cirrhosis. Therefore, TAU 
supplementation could preserve various organs in  
a more functional state.

The safety of TAU and its application in critically 
ill patients (e.g., cirrhotic patients) is another subject 
that should be considered before the application of this 
amino acid in clinical settings. Fortunately, there are 

many studies on the application of TAU against various 
human diseases in clinic [226-228]. It has been found 
that TAU could be administered to humans at very high 
doses (e.g., 6-12 g/day) without any considerable side 
effect [228]. Interestingly, some studies demonstrated 
that TAU could be administered at high doses in disor-
ders such as hepatic encephalopathy and cirrhotic pa-
tients (e.g., for controlling portal hypertension) [122]. 
These data indicate that TAU could be safely adminis-
tered in clinical cases of cholestasis/cirrhosis. However, 
determining the long-term effects of TAU therapy in 
cholestatic/cirrhotic patients requires further studies.

The data obtained from the present research could 
provide an insight into the relevance of TAU deficien-
cy in the pathogenesis of cholestasis/cirrhosis-induced 
organ damage and suggest a viable therapeutic option 
in patients. More studies, including clinical trials, 
could reveal the importance of TAU therapy in man-
aging cholestasis/cirrhosis-induced complications.
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